On convex complexity measures

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On convex complexity measures

Khrapchenko’s classical lower bound n2 on the formula size of the parity function f can be interpreted as designing a suitable measure of sub-rectangles of the combinatorial rectangle f−1(0) × f−1(1). Trying to generalize this approach we arrived at the concept of convex measures. We prove the negative result that convex measures are bounded by O(n2) and show that several measures considered fo...

متن کامل

On Convex Complexity Measures (Draft — do not distribute!)

Khrapchenko’s classical lower bound n on the formula size of the parity function f can be interpreted as designing a suitable measure of subrectangles of the combinatorial rectangle f−1(0)× f−1(1). Trying to generalize this approach we arrived at the concept of convex measures. We prove the negative result that convex measures are bounded by O(n) and show that several measures considered for pr...

متن کامل

Bernstein measures on convex polytopes

We define the notion of Bernstein measures and Bernstein approximations over general convex polytopes. This generalizes well-known Bernstein polynomials which are used to prove the Weierstrass approximation theorem on one dimensional intervals. We discuss some properties of Bernstein measures and approximations, and prove an asymptotic expansion of the Bernstein approximations for smooth functi...

متن کامل

On convex risk measures on Lp-spaces

Much of the recent literature on risk measures is concerned with essentially bounded risks in L∞. In this paper we investigate in detail continuity and representation properties of convex risk measures on L spaces. This frame for risks is natural from the point of view of applications since risks are typically modelled by unbounded random variables. The various continuity properties of risk mea...

متن کامل

On convex risk measures on L-spaces

Much of the recent literature on risk measures is concerned with essentially bounded risks in L∞. In this paper we investigate in detail continuity and representation properties of convex risk measures on Lp spaces. This frame for risks is natural from the point of view of applications since risks are typically modelled by unbounded random variables. The various continuity properties of risk me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical Computer Science

سال: 2010

ISSN: 0304-3975

DOI: 10.1016/j.tcs.2010.02.004